Abstract

BackgroundOne of the most common kinematic abnormalities reported for posterior-stabilized (PS) total knee arthroplasty (TKA) design is paradoxical anterior sliding during early and mid-flexion. PS TKAs have been designed such that the cam-post mechanism does not engage until later in flexion, making these implants vulnerable to anterior sliding during early and mid-flexion. The objective of this study is to investigate the biomechanical effect of increasing bearing conformity on a PS TKA. MethodsUsing a validated computational model of the knee joint, the sagittal conformity of the medial plateau of a PS TKA design was altered. Three scenarios were created and evaluated for mechanics: (1) baseline conformity, (2) increased conformity, and (3) decreased conformity. ResultsFrom full extension to approximately 70° of knee flexion, the medial condyle demonstrated minimal anterior sliding for the increased medial conformity design but revealed anterior sliding of 2 and 4 mm for the baseline and decreased conformity designs, respectively. After cam-post engagement, the medial condyle consistently rolled back for all 3 designs. The lateral condyle experienced consistent rollback throughout the entire flexion range for all 3 designs. However, femorotibial contact force was higher for the increased conformity design, peaking at 3.13 times body weight (×BW) compared to 3.0 × BW contact force for other 2 designs. ConclusionIncreasing medial conformity of the bearing insert appears to reduce mid-flexion sliding for PS TKA designs, although this comes at the expense of increased femorotibial forces. This could be due to kinematic conflicts that may be introduced with highly constraining designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.