Abstract

Background: Abnormal expression of the mastermind-like transcriptional co-activator 2 (MAML2) gene is oncogenic in several human cancers, including glioma. However, the relevance of MAML2 variants with glioma remains unknown. We aimed to investigate the role of MAML2 polymorphisms in glioma risk and prognosis among the Chinese Han population. Methods: Seven MAML2 single-nucleotide polymorphisms (SNPs) were genotyped using Agena MassARRAY system among 575 patients with glioma and 500 age- and gender-matched healthy controls. Logistic regression was used to estimate the association between MAML2 polymorphisms and glioma risk by calculating odds ratios (ORs) and 95% confidence intervals (CI). Kaplan–Meier survival analysis and univariate, multivariate Cox proportional hazard regression analyses for hazard ratios (HRs) and 95% CIs were performed to evaluate the contribution of MAML2 polymorphisms to glioma prognosis. Results: MAML2 rs7938889 and rs485842 polymorphisms were associated with the reduced risk of glioma (OR = 0.69, P=0.023; and OR = 0.81, P=0.032, respectively). Rs7115578 polymorphism had a lower susceptibility to glioma in males (OR = 0.68, P=0.034), while rs4598633 variant with a higher risk in females (OR = 1.66, P=0.016). Additionally, rs7115578 AG genotype represented a poorer prognosis of glioma (HR = 1.24, P=0.033) and astrocytoma (log-rank P=0.037, HR = 1.31, P=0.036). Furthermore, rs11021499 polymorphism had lower overall survival (OS) and progression-free survival (PFS) in patients with low-grade glioma. Conclusion: We provided some novel data suggesting MAML2 polymorphisms might contribute to glioma risk and prognosis. Future studies are warranted to validate these findings and characterize mechanisms underlying these associations.

Highlights

  • Glioma is one of the common types of primary central nervous system (CNS) tumors, accounting for 30% of all CNS tumors, almost 80% of which are considered malignant, and are responsible for the majority of deaths from primary brain tumors [1]

  • A vast number of studies have reported that genetic factors contribute to the development of glioma, which revealed single-nucleotide polymorphisms (SNPs) in cancer-related genes were associated with glioma susceptibility and prognosis [5,6,7]

  • The detailed molecular mechanism under which mastermind-like transcriptional co-activator 2 (MAML2) polymorphisms affect glioma risk and prognosis needs further studies to elucidate. These results suggested that MAML2 polymorphisms might contribute to glioma susceptibility and prognosis

Read more

Summary

Introduction

Glioma is one of the common types of primary central nervous system (CNS) tumors, accounting for 30% of all CNS tumors, almost 80% of which are considered malignant, and are responsible for the majority of deaths from primary brain tumors [1]. A vast number of studies have reported that genetic factors contribute to the development of glioma, which revealed single-nucleotide polymorphisms (SNPs) in cancer-related genes were associated with glioma susceptibility and prognosis [5,6,7]. Methods: Seven MAML2 single-nucleotide polymorphisms (SNPs) were genotyped using Agena MassARRAY system among 575 patients with glioma and 500 age- and gender-matched healthy controls. Logistic regression was used to estimate the association between MAML2 polymorphisms and glioma risk by calculating odds ratios (ORs) and 95% confidence intervals (CI). Kaplan–Meier survival analysis and univariate, multivariate Cox proportional hazard regression analyses for hazard ratios (HRs) and 95% CIs were performed to evaluate the contribution of MAML2 polymorphisms to glioma prognosis. Results: MAML2 rs7938889 and rs485842 polymorphisms were associated with the reduced risk of glioma (OR = 0.69, P=0.023; and OR = 0.81, P=0.032, respectively). Future studies are warranted to validate these findings and characterize mechanisms underlying these associations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.