Abstract
Contact melting heat transfer occurs via relative motion between the heating source and a phase change material (PCM) during melting in various applications. In this study, we investigated the physics of the close contact melting process generated by rotation and when subjected to an applied magnetic field. We transformed the physical model comprising the three-dimensional mass, momentum, and energy equations of the liquid melt layer in the cylindrical coordinate system, including the effects of the Lorentz forces and coupled with an interfacial energy jump condition, into a set of nonlinear similarity equations. Various characteristic dimensionless variables were identified, including an external force parameter σ, which defines the relationship between the external load on the PCM and the centrifugal force due to rotation, and a magnetic field parameter M. Numerical results were obtained and we systematically studied and interpreted the effects of various dimensionless variables on the contact melting and heat transfer processes during rotation, including the structures of the flow and thermal fields, melt layer thickness, and the melting and heat transfer rates. In particular, our results demonstrate that the melting and heat transfer rates increase while the liquid melt film becomes thinner as the external force parameter σ increases. By contrast, an increase in the magnetic field parameter M decreases the melting and heat transfer rates, while yielding relatively thicker melt layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.