Abstract
A bifurcating system subject to multiplicative noise can exhibit on-off intermittency close to the instability threshold. For a canonical system, we discuss the dependence of this intermittency on the Power Spectrum Density (PSD) of the noise. Our study is based on the calculation of the Probability Density Function (PDF) of the unstable variable. We derive analytical results for some particular types of noises and interpret them in the framework of on-off intermittency. Besides, we perform a cumulant expansion for a random noise with arbitrary power spectrum density and show that the intermittent regime is controlled by the ratio between the departure from the threshold and the value of the PSD of the noise at zero frequency. Our results are in agreement with numerical simulations performed with two types of random perturbations: colored Gaussian noise and deterministic fluctuations of a chaotic variable. Extensions of this study to another, more complex, system are presented and the underlying mechanisms are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.