Abstract

The Ay allele is a recessive lethal mutation at the mouse agouti locus, which results in embryonic death around the time of implantation. In the heterozygous state, Ay produces several dominant pleiotropic effects, including an increase in weight gain and body length, a susceptibility to hepatic, pulmonary and mammary tumors, and a suppression of the agouti phenotype, which results in a yellow coat color. To investigate the cellular action of Ay with regard to its effects upon embryonic viability and adult-onset obesity, we generated a series of aggregation chimeras using embryos that differ in their agouti locus genotype. Embryos derived from Ay/a x Ay/a matings were aggregated with those derived from A/A x A/A matings, and genotypic identification of the resultant chimeras was accomplished using a molecular probe at the Emv-15 locus that distinguishes among the three different alleles, Ay, A, and a. Among 50 chimeras, 25 analyzed as liveborns and 25 as 9.5 day embryos, 29 were a/a in equilibrium A/A and 21 were Ay/a in equilibrium A/A. The absence of Ay/Ay in equilibrium A/A chimeras demonstrates that Ay/Ay cells cannot be rescued in a chimeric environment, and the relative deficiency of Ay/a in equilibrium A/A chimeras suggests that, under certain conditions, Ay heterozygosity may partially affect cell viability or proliferation. In the 25 liveborn chimeras, Ay/a in equilibrium A/A animals became obese as adults and a/a in equilibrium A/A animals did not. There was no correlation between genotypic proportions and rate of weight gain, which shows that, with regard to its effects on weight gain, Ay heterozygosity is cell non-autonomous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call