Abstract

In order to investigate the effects of an intramolecular disulfide bond on protein structure and ligand binding dynamics in myoglobin, we prepared a mutant myoglobin having a disulfide bond at the EF corner by introducing two cysteine at the position of Ile 75 and Glu 85. On the basis of the spectral features of the mutant, the formation of the disulfide bond only affected minor structural deviations of the heme environmental structure in the carbonmonoxy form, whereas more substantial structural alterations were induced in the deoxygenated form. Laser photolysis experiments for carbon monoxide rebinding clearly showed that the artificial S-S bond accelerates the bimolecular rebinding rate from 1.0 to 1.8 microM-1 s-1 and increases the geminate yield from 0.072 to 0.092. The ligand migration rate from the solvent to the heme pocket and the bond formation rate from the heme pocket to the heme iron also increased. The free energy diagram for the mutants indicates that the energy barrier for the bond formation was raised as well as that for the ligand migration by introduction of the disulfide bond. However, the effects of the disulfide linkage at the EF corner on the kinetic parameter is much smaller than those of the amino acid substitutions located in the heme cavity. We can conclude that the perturbation of the protein fluctuations by formation of the disulfide bond would be localized at the mutation site or the contributions from other regions and motions might be more important for the ligand binding dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.