Abstract

We study the photoelectron angular distributions (PADs) of diatomic molecule H2 + irradiated by intense laser fields using a nonperturbative scattering theory. We find that the internuclear vector may change the PADs. The PADs have qualitative changes with the increasing of the internuclear distance. The molecular orientation affect the symmetry of the PADs. When the internuclear vector is vertical or parallel to the laser polarization vector, the PADs are four-fold symmetric; for other case the PADs are two-fold symmetric. Due to the modulation effect resulting from the molecular multi-core nature, the size of the jet and the main lobe can be enlarged or reduced. The molecular modulation effect become obvious for large internuclear distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.