Abstract

AbstractThe gas flow fields of a cyclone with different inlet section angles have been studied numerically. The gas flow fields were simulated by means of the Reynolds Stress Transport Model (RSTM). The velocities and pressure drop profiles of these cyclones were investigated. The shortcut flow rates at the bottom of the vortex finder were calculated with different inlet section angles. To analyze the relationship between the inlet section angle and the vortex finder insertion deepness, this paper details the shortcut flow rates at the bottom of the vortex finder for three vortex finder insertion depths. The results indicate that the inlet section angle can decrease the shortcut flow from the bottom of the vortex finder, which has practical importance for the improvement of the separation efficiency. The inlet section angle can also decrease the pressure coefficient of a cyclone. When the inlet section angle is 45 °, the level of decrease is up to 30 %. However, the effect of the inlet section angle on the separation performance is related to the dimension of the vortex finder, i.e., the insertion depth and diameter of the vortex finder, and the effect is different when the cyclone has different vortex finder insertion depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.