Abstract

In this paper, the effects of the initial stress on the propagation and localization properties of the Rayleigh surface waves in randomly disordered layered piezoelectric phononic crystals are studied. Due to different mechanical properties between the piezoelectric material and the polymer, different initial stresses in these two layers satisfying the equilibrium condition and interfacial compatibility are considered, which is more suitable for the practical cases. The transfer matrix between two consecutive piezoelectric unit cells is derived according to the continuity conditions. The expression of the localization factor is presented, and the wave localization properties are analyzed. Numerical calculations for the PVDF/PZT–2 periodic composites with the initial stress are performed. The band gap characteristics are studied taking the mechanical and electrical coupling into account. It is found that the localization degree can be influenced by the piezoelectric constants. With the increase in the piezoelectric constant, the stop band regions are enlarged for the ordered structures, and the localization properties of Rayleigh waves are strengthened for the disordered systems. The Rayleigh waves will be localized in mistuned periodic piezoelectric composites. The characteristics of band gaps and wave localization in ordered and disordered piezoelectric phononic crystals can be significantly changed by tuning the initial stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call