Abstract

This study explores the nuclear magnetic shielding, chemical shifts, and the optoelectronic properties of the BiMnVO5 compound using the full-potential linearized augmented plane wave method within the generalized gradient approximation by employing the Hubbard model (GGA + U). The 209Bi and 51V chemical shifts and bandgap values of the BiMnVO5 compound in a triclinic crystal structure are found to be directly related to Hubbard potential. The relationship between the isotropic nuclear magnetic shielding σiso and chemical shift δiso is obtained with a slope of 1.0231 and − 0.00188 for 209Bi and 51V atoms, respectively. It is also observed that the bandgap, isotropic nuclear magnetic shielding, and chemical shifts increase with the change in Hubbard potentials (U) of 3, 4, 5, 6, and 7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call