Abstract

The present work presents an experimental study on a free-falling rigid sphere in a quiescent incompressible newtonian fluid, placed in an oscillating frame. The goal of this investigation is to examine the effect of the history force acting on the sphere at small Reynolds numbers (Re≤2.5) and finite Strouhal numbers (1≤Sl≤20). The particle trajectory is measured by using a high-speed video camera and modern techniques of image processing. The average terminal velocity, the oscillation magnitude, and the phase shift with the oscillating frame are measured and compared with those obtained from theoretical approaches. The comparison is made by solving the equation of motion of the sphere with and without the history force. In addition to the significant role that this force plays in the momentum balance, it was found that the correction of the added mass force and the history force by the empirical coefficients of Odar and Hamilton (J Fluid Mech 18:302–314, 1964; J Fluid Mech 25:591–592, 1966) are not necessary in our Re and Sl ranges. The added mass is the same as that obtained by the potential flow theory and the history force is well predicted by the Basset expression (Treatise on hydrodynamics, 1888).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.