Abstract

To clarify the mechanism of isopropyl-N-phenyl carbamate (IPC) action on higher plant cells the sensitivity of microtubules (cortical network and mitotic arrays) and microtubule organizing centers to IPC treatment (30 microM) in IPC-resistant and sensitive Nicotiana sylvestris lines was studied. It was clearly demonstrated that IPC does not depolymerize plant MTs but causes the MTOC damage in cells, which results in MTOC fragmentation, splitting of the spindle poles and in abnormal division spindle formation. It was also found that IPC-resistance of mutant N. sylvestris line correlates not with tubulin resistance to IPC action but possibly with resistance of one of the proteins involved in MTOC composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.