Abstract

The increase in energy consumption in building design and construction and the issues related to environmental protection have steered many current researchers toward examining the ways to reduce total CO2 emissions, which resulted in the development of various measures to increase energy efficiency. One measure for more cost-efficient and rational use of energy resources in individual residential buildings is the application of passive solar systems with a sunspace. This paper presents the effects of the shape factor of a residential building with a passive sunspace on the total consumption of heating and cooling energy. The total amount of energy required for building heating and cooling was calculated by means of dynamic modelling using EnergyPlus software. The simulations were run according to the meteorological parameters for the city of Nis. For simulation purposes, models of residential buildings with a passive sunspace and square- and rectangle-shaped floors were designed. The variations between the models include different building shape factor, floor geometry, surface area of the southern fa?ade, and glazing percentage, i.e. window-to-wall ratio (WWR). Examination of the models with WWR=20%, WWR=40%, and WWR=60% revealed that the elongated shape of a building with the aspect ratio of 2.25:1, with the longer side of the fa?ade facing south, is the most favourable in terms of heating energy consumption. For the same WWRs, the elongated shape of a building with the aspect ratio of 1.56:1, with the longer side of the fa?ade facing south, is the most favourable in terms of cooling energy consumption. As WWR increases, so does the amount of energy required to cool the building. The biggest increase in heating energy consumption was observed in buildings with the aspect ratio 1:2.25, with the shorter side facing south.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.