Abstract

In the ultra precision diamond cutting process, the rake angle of the tool is likely to become negative because the edge radius of tool is considerably large compared to the sub-micrometer depth of cut. The round edge of the tool might sometimes cause plowing results in a poor surface, or burnishing which results in a shiny surface depending on the depth of cut. This study deals with the relationship between the friction of a tool-workpiece and the minimum cutting thickness in micro cutting. Proposed is an ultra precision cutting model in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness with a continuous chip. According to the model, a smaller edge radius and a higher friction coefficient make the cutting depth thinner. The experimental results verify the proposed model and provide various supporting evidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.