Abstract

ABSTRACT Background Periodontitis is a chronic destructive inflammatory disease exacerbated by osteoblast dysfunction. Ferroptosis has emerged as a significant factor that could contribute to the pathological changes observed in periodontitis. However, the impact of ferroptosis on osteogenic differentiation and gene expression patterns of primary osteoblasts remain elusive. Methods In this study, osteoblasts were osteogenically induced for specific durations with and without the ferroptosis inducer erastin. Subsequently, cell proliferation, ferroptosis-related molecules, and osteogenic differentiation capacity were assessed. Furthermore, the differences in transcriptome expression following erastin treatment were analyzed by RNA sequencing. Results The results demonstrated that erastin treatment induced ferroptosis, resulting in suppressed cell proliferation and impaired osteogenic differentiation. Transcriptomic analysis revealed significant alterations in processes such as hydrogen peroxide catabolism, response to lipid peroxidation, and metal iron binding, as well as BMP receptor activity and collagen type XI trimer. Conclusion The ferroptosis inducer erastin inhibited osteoblast proliferation and differentiation. Our study provides novel insights into the effect of ferroptosis on osteogenesis, suggesting that targeting ferroptosis may present a promising approach in the treatment of periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call