Abstract
The symmetric and asymmetric fusion reaction systems forming the same compound nuclei 26Al, 30Si, 38Ar and 170Hf are investigated with the frame of improved isospin dependent quantum molecular dynamics model. The entrance channel mass asymmetry dependence of compound nucleus formation is found by analyzing the shell correction energies, the Coulomb barriers and the fusion cross sections. The calculated fusion cross sections agree quantitatively with the experimental data. The results indicate that compound nucleus formation is favorable for the systems with larger mass asymmetry because of the smaller Coulomb contribution to the fusion barrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.