Abstract

ABSTRACTSolid‐polymer electrolytes (SPEs) in the form of poly(vinyl alcohol) (PVA) doped with various amounts (5, 10, and 15 wt %) of lithium perchlorate trihydrate (LiClO4·3H2O) and 2 wt % cesium copper oxide (Cs2CuO2) nanoparticles were fabricated by a solvent intercalation method. The obtained nanocomposites were evaluated for their chemical structure and microstructural and morphological behaviors via Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy methods, respectively. The obtained dielectric behaviors, alternating‐current conductivity, dielectric modulus, and dielectric relaxation of the SPEs depended on the volume fraction of the electrolyte. Linear behavior of the current–voltage characteristics for all of the SPE films was observed with a slight deviation at a higher voltage. The thermal behaviors of the PVA–Cs2CuO2–LiClO4 films were evaluated by differential scanning calorimetry and thermogravimetric analysis. The refractive index, band‐gap energy, and optical dispersion were examined with UV–visible spectroscopy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45852.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.