Abstract

Micro-electromechanical systems (MEMS) have wide application in the development of sensors for the detection of magnitudes in almost any domain [1]. Resonant mode operation of micro and nano-scale oscillators have gained wide interest for applications including filters, amplifiers, non-linear mixers, atomic scale imaging, biological and chemical sensors. The device that we propose is an electrically actuated microcantilever beam. More precisely, in our design the microcantilever constitutes the movable plate of a micro-capacitor and its displacement is controlled by the voltage applied across the plates. Review of literature shows that the electric field pattern between the beam and the substrate has always been assumed to be straight parallel lines normal to the substrate. In reality the electric field must be normal both to the substrate and the beam. Considering this phenomenon, the force exerted on the beam should always be normal to its surface and as the beam's curvature increases, the direction of the force also deviates proportionally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.