Abstract

The influence of polymer wrapped two neighbouring single-walled nanotubes’ (SWNTs) dispersion on their load transfer is investigated by molecular dynamics (MD) simulations. The influence of the SWNTs’ position, the polymer chain length and the temperature on the interaction force between the two neighbouring SWNTs are systematically studied. There are four main findings from our simulations: (1) The dispersion angle dominates the amplitude and the interaction force evolution with or without polymer during the pulling process of two SWNTs. (2) The chain length does not affect the two SWNTs’ interaction force within a short separation distance, the so called “Force enhancing point”. The enhanced load effect of the polymer takes place after the load displacement goes across this point. (3) The temperature has a minor influence on the maximum pull force, while the increased temperature greatly decreases the pullout energy. (4) Based on the detailed analysis of the separation process, the self-repairing function of the system is found. The present results provide a guidance for understanding the load transfer of SWNT dispersion in phononic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.