Abstract

The aim of the study was to evaluate the accuracy of heat treatment guidelines, generally followed in industrial practices, about the T6 heat treatment of A356 aluminum alloy. In particular, the effect of the delay between quenching and artificial aging (pre-aging time) on microstructure, hardness, and tensile behavior was studied using specimens extracted from different locations of a cylinder head, characterized by different cooling rates and, consequently, by different secondary dendrite arm spacing values. Hardness and tensile tests confirmed the detrimental effect of pre-aging with a 20% reduction in hardness and strength after approximately 1 h of pre-aging, both for samples with fine and large SDAS. Differential scanning calorimetry analyses on samples that were solutionized, quenched, and pre-aged between 0 and 96 h, suggested that the nature and composition of the clusters formed during pre-aging, rather than their size, influenced the subsequent precipitation process and the final mechanical properties of the alloy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call