Abstract

Infrared microspectroscopy is a powerful tool in the analysis of biological samples. However, strong electromagnetic scattering may occur since the wavelength of the incident radiation and the samples may be of comparable size. Based on the Mie theory of single spheres, correction algorithms have been developed to retrieve pure absorbance spectra. Studies of the scattering characteristics of samples of different types, obtained by microspectroscopy, have been performed. However, the detailed, microscopic effects of the coupling of the samples on signatures in spectra, obtained by infrared microspectroscopy, are still not clear. The aim of this paper is to investigate how the coupling of spherical samples influences the spectra. Applying the surface integral equation (SIE) method, we simulate small dielectric spheres, arranged as double-spheres or small arrays of spheres. We find that the coupling of the spheres hardly influences the broad oscillations observed in infrared spectra (the Mie wiggles) unless the radii of the spheres are different or the angle between the direction of the incident radiation and the normal of the plane where the spheres are located is large. Sharp resonance features in the spectra (the Mie ripples) are affected by the coupling of the spheres and this effect depends on the polarization of the incident wave. Experiments are performed to verify our conclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.