Abstract
Interaction of apolipoproteins (apo) with lipid surfaces plays crucial roles in lipoprotein metabolism and cholesterol homeostasis. To elucidate the thermodynamics of binding of apoA-I to lipid, we used lipid emulsions composed of triolein (TO) and egg phosphatidylcholine (PC) as lipoprotein models. Determination of the level of binding of wild-type (WT) apoA-I and some deletion mutants to large (120 nm diameter; LEM) and small (35 nm diameter; SEM) emulsions indicated that N-terminal (residues 44-65) and C-terminal (residues 190-243 and 223-243) deletions have large effects on lipid interaction, whereas deletion of the central region (residues 123-166) has little effect. Substitution of amino acids at either L230 or L230, L233, and Y236 with proline residues also decreases the level of binding, indicating that an alpha-helix conformation in this C-terminal region is required for efficient lipid binding. Calorimetry showed that binding of WT apoA-I to SEM generates endothermic heat (DeltaH approximately 30 kcal/mol) in contrast to the exothermic heat (ca. -85 kcal/mol) generated upon binding to LEM and egg PC small unilamellar vesicles (SUV). This exothermic heat arises from an approximately 25% increase in alpha-helix content, and it drives the binding of apoA-I to LEM and SUV. There is a similar increase in alpha-helix content of apoA-I upon binding to either SEM or SUV, but the binding of apoA-I to SEM is an entropy-driven process. These results suggest that the presence of a core triglyceride modifies the highly curved SEM surface packing and thereby the thermodynamics of apoA-I binding in a manner that compensates for the exothermic heat generated by alpha-helix formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.