Abstract

Abstract We investigate the effects of the core-collapse supernova (CCSN) ejecta on a rapidly rotating and massive companion star. We show that the stripped mass is twice as high as that of a massive but nonrotating companion star. In close binaries with orbital periods of about 1 day, the stripped masses reach up to . By simulating the evolutions of the rotational velocities of the massive companion stars based on different stripped masses, we find that the rotational velocity decreases greatly for a stripped mass higher than about . Of all the known high-mass X-ray binaries (HMXBs), Cygnus X-3 and 1WGA J0648.024418 have the shortest orbital periods, 0.2 and 1.55 days, respectively. The optical counterpart of the former is a Wolf-Rayet star, whereas it is a hot subdwarf for the latter. Applying our model to the two HMXBs, we suggest that the hydrogen-rich envelopes of their optical counterparts may have been stripped by CCSN ejecta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call