Abstract

We study the properties of a steady, multi-species, low angular momentum accretion flow around a Schwarzschild black hole. Each species is described by a relativistic equation of state. We find that the transonic properties depend strongly on the composition of the flow. We find that an electron-positron pair plasma is the least relativistic one. This flow produces only one sonic point very close to the event horizon and does not show multiple critical points for any angular momentum or energy. When the baryons are present, the number of critical points depend on the specific energy content. Since the number of critical points decide whether the flow will have nonlinearities or shock waves, our results imply that whether standing shocks will form or not depends on the flow composition. Thus, for instance, a pure electron-positron pair plasma will never undergo a shock transition, while mixing it with some baryons (common in outflows and jets, for example) as in a completely ionized gas, will have shocks. We study in detail how the baryon loading affects the shock properties and discuss the implications in astrophysical observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call