Abstract

MiRNAs are small, non-coding RNAs that can silence the expression of various target genes by binding their mRNAs and thus regulate a wide range of crucial bodily functions. However, the miRNA expression profile of schizophrenia after antipsychotic mediation is largely unknown. Non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonists such as MK-801 have provided useful animal models to investigate the effects of schizophrenia-like symptoms in rodent animals. Herein, the hippocampal miRNA expression profiles of Sprague-Dawley rats pretreated with MK-801 were examined after antipsychotic clozapine (CLO) treatment. Total hippocampal RNAs from three groups were subjected to next-generation sequencing (NGS), and bioinformatics analyses, including differential expression and enrichment analyses, were performed. Eight miRNAs were differentially expressed between the MK-801 and vehicle (VEH) control groups. Interestingly, 14 miRNAs were significantly differentially expressed between the CLO+MK-801 and MK-801 groups, among which rno-miR-184 was the most upregulated. Further analyses suggested that these miRNAs modulate target genes that are involved in endocytosis regulation, ubiquitin-mediated proteolysis, and actin cytoskeleton regulation and thus might play important roles in the pathogenesis of schizophrenia. Our results suggest that differentially expressed miRNAs play important roles in the complex pathophysiology of schizophrenia and subsequently impact brain functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.