Abstract
These studies were designed to investigate the effects of the chrysotherapeutic agents auranofin and myochrysine (GST) on hepatic and renal drug-metabolizing enzymes and heme metabolism. Male Sprague-Dawley rats were either administered a single dose of auranofin (17, 34, or 68 mg/kg, p.o.) or administered daily doses of auranofin (0.2, 0.6, 2, 9, or 40 mg/kg/day, p.o.) or GST (1.2 or 5.8 mg/kg/day, i.p.) for 3 or 14 days. Rats were killed 24 hr after the final treatment, and subcellular fractions of liver and kidney were prepared. Cytochrome P-450 (P-450) content and ethoxycoumarin- t-deethylase (ECOD), benzphetamine- N-demethylase (BPND), δ-aminolevulinic acid (ALA) synthetase, and heme oxygenase activities were determined. Twenty-four hours following single doses of auranofin, no effects on hepatic P-450, ECOD, or BPND were observed. Treatment with the positive control compounds, CoCl 2 (60 mg/kg) and Co-protophorphyrin IX (33 mg/kg), produced decreases in all three variables at 24 hr. Auranofin, at 2 mg/kg, and GST treatment, at both doses, reduced hepatic P-450 and ECOD activity at 3 days. This effect was reversed with continued treatment for 14 days. BPND activity was unaffected at 3 days but was decreased at 14 days. Heme oxygenase activity was enhanced at 3 days and had returned to control activity at 14 days, while ALA synthetase was unaffected. With the exception of heme oxygenase, which was increased, renal variables were unaltered at 3 days. At 14 days, renal P-450 content was decreased in the high-dose auranofin group, heme oxygenase activity was increased in all groups, and ALA synthetase activity was elevated in high-dose auranofin animals. These data indicate that, at doses twenty times the human dose, auranofin and GST administration produced reversible decreases in hepatic and renal P-450 which may be the result of altered heme metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.