Abstract

We have studied the postnatal evolution of the glial cells in the rat pineal gland after its chemical pre- and perinatal denervation, by the assessment of the immunocytochemical expression of three antigens characteristic of glial cells i.e., vimentin (VIM), glial fibrillary acidic protein (GFAP), and S-100 protein. The neurotoxic agents we applied consisted of 6-hydroxydopamine (6-OHDA) administered during the first 5 postnatal days, and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) injected to pregnant rats in the 15th gestational day. VIM immunoreactivity was detected in pineal glial cells from the first postnatal day, both in denervated and control groups. However, in denervated glands, the maturation process of the glial cells is considerably accelerated, since they appear completely detached of the connective tissue septa at day 15. From day 30, the number of VIM-positive structures progressively increases until adulthood, when a large number of immunoreactive cell processes produces a reticular appearance to the denervated pineal gland. The first GFAP and S-100 protein immunoreactive cells were observed earlier in denervated animals (5th postnatal day for S-100 protein, and 10th postnatal day for GFAP) compared with controls. In the experimentally denervated groups, the population of positive cells, as well as their size and the number of their cell processes, is considerably higher and progressively increased. They were always characteristically located in the proximal half of the gland. From day 45, this region of the gland shows a notable amount of hypertrophic positive cells with thick processes, showing a gliotic aspect.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call