Abstract

AbstractThis paper studies the effect of fractional derivatives on the fractional convective flow of hybrid nanofluids in a wavy enclosure that has inlet and outlet parts near the left wall and is filled with a porous medium. The Caputo definition of the fractional derivatives is applied on the partial differential equations governing flow. The complex shape is mapped to a rectangular domain using appropriate transformations. The finite difference method is used to solve the resulting system. The results showed that an increase in order of the fractional derivatives causes a low activity of the fluid flow and a reduction in the rate of heat transfer. Also, an increase in the nanoparticles volume fractions reduces the activity of the fluid flow and, as a result, the rate of heat transfer is diminished. An enhancement in fluid motion and rate of the heat transfer is obtained by increasing the amplitude of the wavy wall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call