Abstract

In the present study, 3D finite element models for fractured bones with function-graded (FG) bone-plates and traditional bone-plates made of stainless steel (SS) or titanium (Ti) alloy are generated using the ABAOUS code. The predicted Von Mises stresses at the fracture site and underlying bone-plate are examined at different healing stages. The effects on the predicted Von Mises stresses at the fracture site of the presence of a gap between the plate and fractured bone are also studied. Based on the analytical results, it is found that the stress shielding at the fracture site at the fully healed stages decreases when using FG bone-plates compared to Ti alloy or SS bone-plates. In the initial healing stages, the Von Mises stresses at the fracture site increase (stress shielding decreases) by 17% and 11% when using FG bone-plates as compared to SS bone-plates for contacted and non-contacted bone-plate system, respectively. The significant effects of using an FG bone-plate with a gap on the resultant Von Mises stresses on the bone underneath the plate and on the bone stress shielding should be taken into consideration during fractured bone fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.