Abstract

Considering the velocity anisotropy of the solid/fluid relative motion and employment of the BISQ theory[1] based on the one-dimensional porous isotropic case, we establish a two-phase anisotropic elastic wave equation to simultaneously include the Biot and the squirt mechanisms in terms of both the basic principles of the fluid’s mass conservation and the elastic-wave dynamical equations in the two-phase anisotropic rock. Numerical results, while the Biot-flow and the squirt-flow effects are simultaneously considered in the transversely isotropic (TI) poroelastic medium, show that the attenuation of the quasi P-wave and the quasi SV-wave strongly depend on the permeability anisotropy, and the attenuation behavior at low and high frequencies is contrary. Meanwhile, the attenuation and dispersion of the quasi P-wave are also affected seriously by the anisotropic solid/fluid coupling additional density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.