Abstract

This study was designed to investigate the inflammatory responses in fat embolism syndrome (FES) and the relationship of ALX/FPR2 receptors and lipoxin A4 (LXA4) in FES models. In this model, lung injury score, lung tissue wet-to-dry (W/D) ratio and total protein concentration in bronchoalveolar lavage fluid (BALF) were increased compared with those of the control group. Meanwhile, the number of leukocytes and neutrophils was significantly increased in the FES group, as was the myeloperoxidase (MPO) activity and mRNA expression. In addition, the release of TNF-α and IL-1β was increased. Then, we explored whether LXA4 and ALX/FPR2 were involved in the pathological process of FES. The LXA4 concentration in the experimental groups was markedly higher than that in the control group. At the same time, the protein and mRNA levels of ALX/FPR2 were upregulated in the rat model of FES. Moreover, rats treated with BML-111, an agonist for the ALX/FPR2 receptor of LXA4, showed a lower inflammatory response than mice treated with fat alone. However, the role of BML-111 in fat emboli (FE)-induced acute lung injury (ALI) was attenuated by BOC-2, an antagonist of the ALX/FPR2 receptor of LXA4. Our results demonstrated that the inflammatory response may play an important role in the pathogenesis of FES and that the activation of the ALX/FPR2 receptor for LXA4 can decrease the inflammatory response and may be a therapeutic target for FE-induced ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call