Abstract
AbstractWe report on the electrochemical performance of Mg‐14Li‐3Al‐1Gd electrodes prepared by the accumulation roll bonding technique in a 0.7 M NaCl solution. To explore the effects of adding different concentrations of Na2SnO3 to 0.7 M NaCl solutions, potentiodynamic polarization, potentiostatic oxidation, electrochemical impedance spectroscopy, and scanning electron microscopy were utilized. The results show that the addition of Na2SnO3 to a 0.7 M NaCl solution increases the corrosion potential of the Mg‐14Li‐3Al‐1Gd electrodes. Samples with 0.1 mM Na2SnO3 retained the highest discharging current density and lowest polarization resistance of all the specimens. Electrodes in an electrolyte solution mixed with 0.1 mM Na2SnO3 presented a larger active reaction area, deeper channels, and higher discharging currents than those with other additive concentrations. In conclusion, to improve the electrochemical behavior of Mg‐14Li‐3Al‐1Gd electrodes in a 0.7 M NaCl solution, the optimal concentration of Na2SnO3 is 0.1 mM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.