Abstract

Polystyrene, a polymer extensively used in the biomedical field, causes a problem for some applications because of its surface hydrophobicity. Nitrogen plasma could transform this shortage through polar group attachment. To understand the role of hydrogen during surface functionalization in the nitrogen cold plasma, the effects of the nitrogen and the mixture of N2/H2 plasma are investigated by both the examinations of the densities of attached amine groups and the in-situ diagnostic analyses such as optical emission spectroscopy and mass spectrometry. An increase of functionalization has been proved to be controlled by the gaseous NH radical formation when H2 is added.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.