Abstract

In this study the effects of the actuation waveforms on the droplet generation in a drop-on-demand inkjet printing are studied systematically by numerical simulations. Two different types of waveforms, namely the unipolar and bipolar actuations, are investigated for three fluids with different physical properties. We focus on two key parameters, which are the dwell time and the velocity amplitude. For the unipolar driving, the ejection velocity and the ejected liquid volume are both increased as the velocity amplitude becomes larger. The dwell time only has minor effects on both the ejection velocity and the ejected liquid volume. The ejection velocity decreases significantly for large liquid viscosity, while the influences of viscosity on the ejected liquid volume are much weaker. Four different droplet morphologies and the corresponding parameter ranges are identified. The droplet radius can be successfully reduced to about 40% of the nozzle exit radius. For the bipolar waveforms, same droplet morphologies are observed but with shifted boundaries in the phase space. The minimal radius of stable droplet produced by the bipolar waveforms is even smaller compared to the unipolar ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.