Abstract
Experimental, analytical, and modeling techniques employed in this study elucidate interactions between adsorbate molecules and the interior surfaces of the porous host faujasite. The vibrational spectroscopies of guest and host offer opportunities to locate the guest site in the host. We present Fourier transform (FT) infrared (IR) studies of sodium-X (NaX) faujasite supercage-included tert-butyl halides, (CH(3))(3)C-X (X=Cl, Br, I) in comparison with the adsorbate molecular gas-phase and host solid-state spectra at 295 K. Four observations of guest (nu(5,) nu(6), nu(7), and {nu(3), nu(16), nu(17)}) vibrational mode changes, three of them concomitant with host mode changes, together with modeling studies, point to a particular preferred siting of the guest molecules at host hexagonal prisms (D6R). The siting involved simultaneous interactions of the host with methyl group axial protons and the halide atom. All three methyl group axial protons interact preferentially with a single D6R O1 oxygen atom via C-H...O bonding. The halide atom also interacts with a site III' Na cation. The cation, in turn, is coordinated by three O atoms (two O1 and an O4). Two of these O atoms (O1) bridge the double six-rings that form the hexagonal prism part of the NaX substructure. O4 connects the two D6R units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.