Abstract

Nickel-rich β-NiAl alloys, which are potential materials for high-temperature shape-memory alloys, show a thermoelastic martensitic transformation, which produces their shape memory effect. However, the transformation to Ni 5 Al 3 phase during heating of NiAl martensite can interrupt the reversible martensitic transformation; consequently, the shape memory effect in NiAl martensite might not appear after heating. The phase transformation process in binary Ni-(34 to 37)Al martensite was investigated by differential thermal analysis (DTA) method, and we found that the condition of reversible martensitic transformation was not the β → Ni 5 Al 3 transformation, but rather the M → Ni 5 Al 3 transformation occurring at 250 °C to 300 °C. Therefore, the transformation temperature of M → Ni 5 Al 3 determined the highest operating temperature for the shape memory effect. For verifying the critical temperature, the phase transformation process was investigated for eight ternary Ni-33Al-X alloys (X = Cu, Co, Fe, Mn, Cr, Ti, Si, and Nb). Only Ti, Si, and Nb additions were found to be effective in dropping the M s temperature, and they facilitated the shape memory effect in Ni-33Al-X alloys. In particular, the addition of Si and Nb raised the transformation temperature of M → Ni 5 Al 3 , a potentially beneficial effect for shape memory at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.