Abstract

We investigated the selective effects of changes in transdiaphragmatic pressure (Pdi) and duty cycle on diaphragmatic blood flow in supine dogs at normal arterial pressure (N), moderate hypotension (MH), and severe hypotension (SH) [mean arterial pressure (Part) of 116, 75, and 50 mmHg, respectively]. The diaphragm was paced at a rate of 12/min by bilateral phrenic nerve stimulation. Left phrenic (Qphr-T) and left internal mammary (Qim-T) arterial flows were measured by electromagnetic flow probes. Changes in Pdi and duty cycle were achieved by changing the stimulation frequencies and the duration of contraction, whereas Part changes were produced by bleeding. With N and at a duty cycle of 0.5, incremental increases in Pdi produced peaks in Qphr-T and Qim-T at 30% maximum diaphragmatic pressure (Pdimax) with a gradual decline at higher Pdi. With MH and SH, blood flow peaked at 10% Pdimax. At any given Pdi, blood flow was lower with MH and SH in comparison to N. The effect of duty cycle was tested at two levels of Pdi. With N and at low Pdi (25% Pdimax), blood flow rose progressively with increases in duty cycle, whereas at moderate Pdi level (50% Pdimax) blood flow peaked at a duty cycle of 0.3, with no increase thereafter. With MH, blood flow at low Pdi rose linearly with increasing duty cycle but to a lesser extent than with N, and at a moderate Pdi flow peaked at a duty cycle of 0.3. With SH, blood flow at low and moderate Pdi was limited at duty cycles greater than 0.3 and 0.1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call