Abstract

During the past 20 years, due to climate change, the government and the private sector have significantly focused on relying on non-fossil fuel-based methods for their energy needs. Climate change-related events, such as unusual weather conditions, abnormal temperature spikes, etc., have an adverse influence on clean energy-based investments. In the given study, we intend to focus on how an incremental temperature rise could affect investors’ perceptions of clean energy assets. To understand the investor-based sentiment on climate change, we utilize prominent clean energy ETFs (exchange traded funds) and consider the temperature’s effect on them. The daily average temperatures of the three most dynamic international financial centers: New York, London and Tokyo, are taken as predictors. Deep learning-based neural networks are applied to understand both the linear and non-linear relationships between the desired variables and identify the causal effects. The results indicate that in almost all the cases with desired lags, there is some sort of non-linear causality, irrespective of linear causality effects. We hope this occurrence can help portfolio managers and environmental professionals in identifying novel climate change-related factors when considering the temperature-related risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call