Abstract

Veronaea botryosa is a melanized mold and cause of systemic fungal infections in cultured sturgeon (Acipenser spp.). Mortality in adult female sturgeon caused by this emergent pathogen results in significant economic losses for the caviar industry. Little is known regarding environmental conditions conducive to V. botryosa infection. This study evaluated the effect of temperature on V. botryosa infectivity and dissemination following intramuscular injection challenge of white sturgeon maintained at 13 or 18 °C for 40 days. Daily mortality was recorded and persistence of the fungus in the livers of moribund and surviving fish was investigated using culture and histopathological analysis. Fish maintained at 18 °C developed systemic phaeohyphomycosis and had significantly greater mortality than controls and fish maintained at 13 °C (p < 0.05). Challenged fish, regardless of temperature, exhibited lesions in multiple organs. However, muscle lesions, angioinvasion, and systemic dissemination were more severe and widespread in fish challenged at the higher temperature. In vitro cytotoxicity of V. botryosa was evaluated in white sturgeon skin (WSSK-1) and epithelioma papulosum cyprini (EPC) cell lines inoculated at spore:cell ratios of 1:10, 1:1 and 10:1, then incubated 15, 20 and 25 °C. Cytotoxicity, as indicated by quantifying the release of lactate dehydrogenase into culture supernatants, increased with increasing spore dose and incubation temperature in both fish cell lines. Findings suggest that temperature significantly influences the development of systemic V. botryosa infection in white sturgeon and that WSSK-1 and EPC cells are suitable in vitro models for the study of host–pathogen interactions between V. botryosa and fish epithelial cells.

Highlights

  • Sturgeons are one of the most primitive, extant ray-finned fish species, dating back to the early Jurassic Period [1]

  • The objective of this study was to investigate the in vivo susceptibility of fingerlings to systemic V. botryosa infection at different temperatures using recently described intramuscular injection challenges [7]

  • Laboratory‐controlled infectious challenge Significantly greater mortality was observed in challenged fish compared to their respective control groups (p < 0.0001) and fish maintained at warmer temperatures had significantly higher mortality than those maintained in colder water (p < 0.0001) (Figure 1)

Read more

Summary

Introduction

Sturgeons are one of the most primitive, extant ray-finned fish species, dating back to the early Jurassic Period [1]. The family Acipenderidae represents 25 species of anadromous and potamodromous fishes of North America and Eurasia, with an evolutionary history of over 100 million years [2]. Growth rates are significantly greater when fish are cultured at 20 or 25 °C, Coleman et al Vet Res (2018) 49:11 rather than at 15 °C [6]. Due to their inherent value, slow growth and associated production costs, unexpected mortalities resulting from the appearance of infectious agents can result in severe economic losses

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call