Abstract

The effects of temperature on hearing in the cicada Tettigetta josei were studied. The activity of the auditory nerve and the responses of auditory interneurons to stimuli of different frequencies and intensities were recorded at different temperatures ranging from 16 degrees C to 29 degrees C. Firstly, in order to investigate the temperature dependence of hearing processes, we analyzed its effects on auditory tuning, sensitivity, latency and Q(10dB). Increasing temperature led to an upward shift of the characteristic hearing frequency, to an increase in sensitivity and to a decrease in the latency of the auditory response both in the auditory nerve recordings (periphery) and in some interneurons at the metathoracic-abdominal ganglionic complex (MAC). Characteristic frequency shifts were only observed at low frequency (3-8 kHz). No changes were seen in Q(10dB). Different tuning mechanisms underlying frequency selectivity may explain the results observed. Secondly, we investigated the role of the mechanical sensory structures that participate in the transduction process. Laser vibrometry measurements revealed that the vibrations of the tympanum and tympanal apodeme are temperature independent in the biologically relevant range (18-35 degrees C). Since the above mentioned effects of temperature are present in the auditory nerve recordings, the observed shifts in frequency tuning must be performed by mechanisms intrinsic to the receptor cells. Finally, the role of potassium channels in the response of the auditory system was investigated using a specific inhibitor of these channels, tetraethylammonium (TEA). TEA caused shifts on tuning and sensitivity of the summed response of the receptors similar to the effects of temperature. Thus, potassium channels are implicated in the tuning of the receptor cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.