Abstract

The effect of temperature on the structures of three silicate liquids has been studied by 29Si NMR spectroscopy on glass samples prepared with different glass transition temperatures. The compositions studied are (Na 2O) .34(SiO 2) .66 and (CaO) .10(Na 2O) .15(SiO 2) .75 and (CaO) .25(MgO) .25(SiO 2) .50. In the first two, the abundance of SiO 4 tetrahedra with four bridging oxygens ( Q 4 ) increases significantly with temperature. This change results from the disproportionation reaction 2Q 3 a ́ i Q 2 + Q 4 ( Q n is a SiO 4 tetrahedron with n bridging oxygens), with the observed increase in disproportionation at higher temperatures implying increased randomization of the anionic structure. In the (Na 2O) .34(SiO 2) .66 composition, the temperature dependence of Q 4 abundance enables us to estimate ΔH 0 for this reaction to be 30 ± 15 kJ per mole of Si. Although this reaction thus makes only a minor contribution to the conngurational heat capacity of each liquid, it probably has a major influence on the thermodynamic activity of SiO 2. Widening of the (CaO) .25(MgO) .25(SiO 2) .50 spectral peak with increasing temperature likewise implies increasing randomization of the anionic structure, although specific structural contributions to this widening are not identified. Models of melt structures at liquidus temperatures will be limited in accuracy if they assume that the speciation observed in glasses is unaffected by temperature change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.