Abstract

Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the process with a lag of the process, which suggested that the peaks of mechanical component and biochemical component of SDA might be separated when temperature was low enough.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call