Abstract

Strain-controlled low cycle fatigue tests have been conducted in air between 298–873 K to ascertain the influence of temperature on LCF behaviour of nitrogen-alloyed type 316L stainless steel. A strain amplitude of ± 0.60% and a symmetrical triangular waveform at a constant strain rate of 3 × 10 −3 s −1 were employed for all tests. Crack initiation and propagation modes were evaluated, and the deformation and damage mechanisms which influence the cyclic stress response and fatigue life identified. The cyclic stress response at all temperatures was characterized by an initial hardening to the maximum stress, followed by gradual softening prior to attaining saturation. Temperature dependence of fatigue life showed a maximum in the intermediate temperature range. The drastic reduction in fatigue life at elevated temperatures has been ascribed primarily to the combined influence of dynamic strain ageing effects and oxidation-enhanced crack initiation, while the lower life at room temperature is attributed to detrimental effects associated with deformation-induced martensite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.