Abstract

This article reports the results of an experimental study of the effects of temperature (25 °C, 450 °C, and 700 °C) on the fatigue crack growth behavior of three near-commercial cast gamma titanium aluminide alloys (Ti-48Al-2Cr-2Nb, Ti-47Al-2Mn-2Nb+0.8 pct TiB2, and Ti-45Al-2Mn-2Nb+0.8 pct TiB2). The trends in the fatigue crack growth rate data are explained by considering the combined effects of crack-tip deformation mechanisms and oxide-induced crack closure. Faster fatigue crack growth rates at 450 °C are attributed to the high incidence of irreversible deformation-induced twinning, while slower crack growth rates at 700 °C are due to increased deformation by slip and the effects of oxide-induced crack closure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.