Abstract

The current-voltage (I-V) characteristics of quantum-dot (QD) solar cells under illumination at various temperatures are presented. Stacked of high-density self-assembled InAs/GaAs QDs were incorporated into the Schottky-barrier-type solar cell structure. The I-V characteristics reveal that both short-circuit current and open-circuit voltage of the QD solar cell reduce when the measurement temperature increases. This result is unexpected and inconsistent with a basic solar cell theory where the temperature is believed to cause the enhancement of the short-circuit current. By considering the solar-cell circuit model, we can explain the obtained I-V curves by a high series resistance of the cell structure. Theoretical exclusion of the series resistance shows a substantial improvement of solar cell fill factor and efficiency. This work therefore suggests that reduction of series resistance by properly doping of the epitaxial layers can improve these devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.