Abstract

The effects of temperature on the expression patterns and enzyme activity of cathepsin B (HlCatB), cathepsin D (HlCatD) and acid phosphatase (HlACP) during the embryo development of Haemaphysalis longicornis (bisexual population) were investigated in this study. Eggs were exposed to 20°C (low temperature), 26°C (normal temperature), and 30°C (high temperature) immediately after laying, and collected on odd days of embryo development to measure HlCatB, HlCatD and HlACP gene expression using quantitative real-time PCR, as well as three enzyme activities using spectrophotometry. Then the associations between mRNA expression levels of three enzymes and their enzyme activities were assessed. Compared with normal temperature, the mRNA expression peaks of HlCatB were higher and appeared later at low and high temperatures and the activity of HlCatB increased on most days of embryonic development at high temperature. As for HlCatD, the expression peak appeared later at low temperature, but earlier at high temperature. The activity peaks of HlCatD were lower and appeared earlier at low and high temperatures. As for HlACP, the expression peak was higher and appeared later at low temperature, whereas it formed no prominent peak at high temperature. The activity peak of HlACP was higher at low temperature, but lower at high temperature. The linear regression analysis showed that activities of three enzymes were associated with their mRNA expression levels (P < 0.05). Three enzymes are involved in the embryo adaptation to temperature stress. Moreover, the mRNA expression level may be another factor affecting its enzyme activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call