Abstract

Although the effects of electrical stress and temperature on the performance of the InGaP/GaAs heterojunction bipolar transistors (HBTs) have been widely studied and reported, little or none was reported for the InGaP/GaAs heterojunction phototransistors (HPTs) in the literature. In this paper, we discuss the temperature-dependent characteristic of InGaP/GaAs HPTs before and after electrical stress and assess the effectiveness of the emitter-ledge passivation, which was found to effectively keep the InGaP/GaAs HBTs from degrading at higher temperature or after an electrical stress. The emitter-ledge passivation is also effective keeping a higher optical gain even at higher temperature. An electrical stress was given to the HPTs by keeping the collector current at 60 mA for 15 min. Since the collector current density as an electrical stress is 24 A/cm2 and much smaller than the stress usually given to smaller HBTs for the stress test, the decreased optical gain was not observed when it was given at room temperature. However, when it was given at 420 K, significant decreases of the current gain and optical gain were observed at any temperature. Nevertheless, the emitter-ledge passivation was found effective in minimizing the decreases of the current gain and optical gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.