Abstract

As shown in our previous study, Kwoniella heveanensis DMKU-CE82, a volatile organic compound (VOC)-producing yeast, demonstrated promising antagonistic activity against aflatoxin-producing strain of Aspergillus flavus. This yeast’s volatile organic compounds (VOCs) could reduce Aflatoxin B1 (AFB1) in corn grains. In the current study, we evaluated the effect of temperatures and relative humidity on AFB1 reduction during grain storage when co-incubated with this VOC-producing yeast. The VOCs produced by K. heveanensis DMKU-CE82 could promote reduction of AFB1 to less than 20 part per billion (ppb) in the fungal contaminated corn grains under most storage conditions at 35 °C. The major VOCs produced by 2-, 4-, and 6-day-old yeast cultures were closely matched to 3-methyl-1-butanol, 2-methyl-1-butanol, hydrazine-1-1-dimethyl, and butanoic acid-3-methyl. In addition, this yeast strain had the ability to produce β-1,3-glucanase, amylase, cellulase, chitinase, siderophores, and biofilms. Scanning electron microscopy also confirmed the antagonistic activity of K. heveanensis DMKU-CE82 as it caused structural damage to conidia and inhibited the development of mycelia and conidiophores in both direct fungal–yeast interaction and the VOC method in corn grains. These results demonstrated that this yeast strain could be a promising biocontrol agent against aflatoxin-producing fungi in agricultural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call