Abstract
A recent theoretical study proposed that the anti-wear property of zinc dialkyl dithio phosphate (ZDDP) is due to the formation of chemically connected networks as a result of pressure-induced cross-linkage of phosphate groups of thermally decomposed ZDDP. To investigate the initial decomposition processes and the possibility of linking of phosphate groups in the decomposed product, in-situ high-pressure and high-temperature infrared (IR) spectroscopy using synchrotron radiation were performed on the original ZDDP. At room temperature no substantial structural change was observed up to 21.2 GPa, a pressure far exceeding the predicted onset of a structural transformation for the model zinc phosphate at 7 GPa. The observed Pressure induced broadening of the IR peaks is most likely associated with structural disorder or amorphization of ZDDP which is completely reversible upon decompression. When ZDDP is heated under pressure, an irreversible transformation was observed around 225 °C and 18.4 GPa. The experimental results show that ZDDP undergoes substantial decomposition at high pressures and high temperatures but no hint of cross-linkage of phosphate groups was found.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.