Abstract
Dissolution of cellulose having different viscosity-average molecular weight (M η ) in 7 wt%NaOH/12 wt%urea aqueous solution at temperature from 60 to −12.6°C was investigated with optical microscope, viscosity measurements and wide X-ray diffraction (WXRD). The solubility (Sa) of cellulose in NaOH/urea aqueous solution strongly depended on the temperature, and molecular weight. Their Sa values increased with a decrease in temperature, and cellulose having M η below 10.0 × 104 could be dissolved completely in NaOH/urea aqueous solution pre-cooled to −12.6°C. The activation energy of dissolution (Ea,s) of the cellulose dissolution was a negative value, suggesting that the cellulose solution state had lower enthalpy than the solid cellulose. The cellulose concentration in this system increased with a decrease of M η to achieve about 8 wt% for M η of 3.1 × 104. Moreover, cellulose having 12.7 × 104 could be dissolved completely in the solvent pre-cooled to −12.6°C as its crystallinity (χ c) decreased from 0.62 to 0.53. We could improve the solubility of cellulose in NaOH/urea aqueous system by changing M η , χ c and temperature. In addition, the zero-shear viscosity (η 0 ) at 0°C for the 4 wt% cellulose solution increased rapidly with an increase of M η , as a result of the enhancement of the aggregation and entanglement for the relatively long chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.